Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Curr Microbiol ; 80(7): 220, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37204589

RESUMO

Tejuino is a popular and traditional beverage consumed in north and western of Mexico, due to its biological properties, it is considered a natural source of probiotics. Nevertheless, few studies have been performed on Tejuino microbiota. In this work, the probiotic potential of the tejuino isolated Lactiplantibacillus plantarum BI-59.1 strain was investigated. Its effectiveness was compared with a commercial Lactobacillus spp and identified by 16S rDNA sequence homology. Lactiplantibacillus plantarum BI-59.1 strain showed probiotic properties, i.e., production of antimicrobial compounds (lactic acid and presence of plantaricin A gene), inhibition of entero-pathogens by planktonic cells and metabolites (Salmonella enterica serovar Typhimurium inhibition to HT29-MTX adhesion), biofilm formation, bacterial adhesion (HT29-MTX, 3.96 CFU/cell), and tolerance to stimulated gastrointestinal conditions (tolerance to pH 3 and bile salts). The strain was gamma hemolytic, susceptible to most antibiotics and negative for gelatinase production; thus, the Lactiplantibacillus. plantarum BI-59.1 strain is suitable for its use as a probiotic for nutraceutical or pharmaceutical formulations.


Assuntos
Lactobacillus plantarum , Probióticos , Lactobacillus plantarum/fisiologia , Lactobacillus , Biofilmes , Antibacterianos/farmacologia , Salmonella typhimurium/fisiologia , Probióticos/farmacologia
2.
Pharmaceuticals (Basel) ; 16(3)2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36986511

RESUMO

Metabolic syndrome is a complex disorder that combines abdominal obesity, dyslipidemia, hypertension, and insulin resistance. Metabolic syndrome affects 25% of the world's population. Agave fructans have shown positive effects on alterations related to metabolic syndrome, so some investigations have focused on their bioconjugation with fatty acids to increase their biological activity. The objective of this work was to evaluate the effect of agave fructan bioconjugates in a rat model with metabolic syndrome. Agave fructans enzymatically bioconjugated (acylated via food-grade lipase catalysis) with propionate or laurate were administered orally for 8 weeks in rats fed a hypercaloric diet. Animals without treatment were used as the control group, as well as animals fed with a standard diet. The data indicate that the group of animals treated with laurate bioconjugates showed a significant decrease in glucose levels, systolic pressure, weight gain, and visceral adipose tissue, as well as a positive effect of pancreatic lipase inhibition. These results allow us to demonstrate the potential of agave bioconjugates, particularly laurate bioconjugates, for the prevention of diseases associated with metabolic syndrome.

3.
FEMS Yeast Res ; 22(1)2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35084467

RESUMO

Fructans are the main sugar in agave pine used by yeasts during mezcal fermentation processes, from which Candida apicola NRRL Y-50540 and Torulaspora delbrueckii NRRL Y-50541 were isolated. De novo transcriptome analysis was carried out to identify genes involved in the hydrolysis and assimilation of Agave fructans (AF). We identified a transcript annotated as SUC2, which is related to ß-fructofuranosidase activity, and several differential expressed genes involved in the transcriptional regulation of SUC2 such as: MIG1, MTH1, SNF1, SNF5, REG1, SSN6, SIP1, SIP2, SIP5, GPR1, RAS2, and PKA. Some of these genes were specifically expressed in some of the yeasts according to their fructans assimilation metabolism. Different hexose transporters that could be related to the assimilation of fructose and glucose were found in both the transcriptomes. Our findings provide a better understanding of AF assimilation in these yeasts and provide resources for further metabolic engineering and biotechnology applications.


Assuntos
Agave , Torulaspora , Fermentação , Frutanos/metabolismo , Perfilação da Expressão Gênica , Hidrólise , Saccharomycetales , Torulaspora/metabolismo
4.
Enzyme Microb Technol ; 147: 109783, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33992405

RESUMO

Phlorizin is a low soluble dihydrochalcone with relevant pharmacological properties. In this study, enzymatic fructosylation was approached to enhance the water solubility of phlorizin, and consequently its bioavailability. Three enzymes were assayed for phlorizin fructosylation in aqueous reactions using sucrose as fructosyl donor. Levansucrase (EC 2.4.1.10) from Gluconacetobacter diazotrophicus (Gd_LsdA) was 6.5-fold more efficient than invertase (EC 3.2.1.26) from Rhodotorula mucilaginosa (Rh_Inv), while sucrose:sucrose 1-fructosyltransferase (EC 2.4.1.99) from Schedonorus arundinaceus (Sa_1-SST) failed to modify the non-sugar acceptor. Gd_LsdA synthesized series of phlorizin mono- di- and tri-fructosides with maximal conversion efficiency of 73 %. The three most abundant products were identified by ESI-MS and NMR analysis as ß-D-fructofuranosyl-(2→6)-phlorizin (P1a), phlorizin-4'-O-ß-D-fructofuranosyl-(2→6)-D-fructofuranoside (P2c) and phlorizin-4-O-monofructofuranoside (P1b), respectively. Purified P1a was 16 times (30.57 g L-1 at 25 °C) more soluble in water than natural phlorizin (1.93 g L-1 at 25 °C) and exhibited 44.56 % free radical scavenging activity. Gd_LsdA is an attractive candidate enzyme for the scaled synthesis of phlorizin fructosides in the absence of co-solvent.


Assuntos
Gluconacetobacter , Florizina , Rhodotorula , Sacarose
5.
Electron J Biotechnol ; 49: 14-21, Jan. 2021. graf, tab
Artigo em Inglês | LILACS | ID: biblio-1291625

RESUMO

BACKGROUND: Milk whey, a byproduct of the dairy industry has a negative environmental impact, can be used as a raw material for added-value compounds such as galactooligosaccharides (GOS) synthesis by bgalactosidases. RESULTS: B-gal42 from Pantoea anthophila strain isolated from tejuino belonging to the glycosyl hydrolase family GH42, was overexpressed in Escherichia coli and used for GOS synthesis from lactose or milk whey. Crude cell-free enzyme extracts exhibited high stability; they were employed for GOS synthesis reactions. In reactions with 400 g/L lactose, the maximum GOS yield was 40% (w/w) measured by HPAEC-PAD, corresponding to 86% of conversion. This enzyme had a strong predilection to form GOS with b(1 ? 6) and b (1 ? 3) galactosyl linkages. Comparing GOS synthesis between milk whey and pure lactose, both of them at 300 g/L, these two substrates gave rise to a yield of 38% (60% of lactose conversion) with the same product profile determined by HPAEC-PAD. CONCLUSIONS: B-gal42 can be used on whey (a cheap lactose source) to produce added value products such as galactooligosaccharides.


Assuntos
Oligossacarídeos/biossíntese , beta-Galactosidase/metabolismo , Pantoea , Lactose/metabolismo , Proteínas Recombinantes , Indústria de Laticínios , Soro do Leite
6.
Carbohydr Polym ; 247: 116710, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32829838

RESUMO

Enzymatic glycosylation is an efficient way to increase the water solubility and the bioavailability of flavonoids. Levansucrases from Bacillus subtilis (Bs_SacB), Gluconacetobacter diazotrophicus (Gd_LsdA), Leuconostoc mesenteroides (Lm_LevS) and Zymomonas mobilis (Zm_LevU) were screened for puerarin (daidzein-8-C-glucoside) fructosylation. Gd_LsdA transferred the fructosyl unit of sucrose onto the glucosyl unit of the acceptor forming ß-d-fructofuranosyl-(2→6)-puerarin (P1a), while Bs_SacB, Lm_LevS and Zm_LevU synthesized puerarin-4'-O-ß-D-fructofuranoside (P1b) and traces of P1a. The Gd_LsdA product P1a was purified and assayed as precursor for the synthesis of puerarin polyfructosides (PPFs). Bs_SacB elongated P1a more competently forming a linear series of water-soluble PPFs reaching at least 21 fructosyl units, as characterized by HPLC-UV-MS, HPSEC and MALDI-TOF-MS. Simultaneous or sequential Gd_LsdA/Bs_SacB reactions yielded PPFs directly from puerarin with the acceptor conversion ranging 82-92 %. The bi-enzymatic cascade synthesis of PPFs in the same reactor avoided the isolation of the intermediate product P1a and it is appropriate for use at industrial scale.


Assuntos
Bacillus subtilis/enzimologia , Gluconacetobacter/enzimologia , Hexosiltransferases/metabolismo , Isoflavonas/síntese química , Polissacarídeos/síntese química , Glicosilação , Hidrólise , Sacarose/metabolismo
7.
Biotechnol Rep (Amst) ; 25: e00420, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32025510

RESUMO

Vinasses from the tequila industry are wastewaters with highly elevated organic loads. Therefore, to obtain value-added products by yeast fermentations, such as 2-phenylethanol (2-PE) and 2-phenylethylacetate (2-PEA), could be interesting for industrial applications from tequila vinasses. In this study, four yeasts species (Wickerhamomyces anomalus, Candida glabrata, Candida utilis, and Candida parapsilosis) were evaluated with two different chemically defined media and tequila vinasses. Differences in the aroma compounds production were observed depending on the medium and yeast species used. In tequila vinasses, the highest concentration (65 mg/L) of 2-PEA was reached by C. glabrata, the inhibitory compounds decreased biomass production and synthesis of 2-PEA, and biochemical and chemical oxygen demands were reduced by more than 50 %. Tequila vinasses were suitable for the production of 2-phenylethylacetate by the shikimate pathway. A metabolic network was developed to obtain a guideline to improve 2-PE and 2-PEA production using flux balance analysis (FBA).

8.
Enzyme Microb Technol ; 122: 19-25, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30638505

RESUMO

Fructosylation can significantly improve the solubility, stability and bioactivity of phenolic compounds, increasing their health benefits. Levansucrase from Gluconacetobacter diazotrophicus (LsdA, EC 2.4.1.10) was found to transfer the fructosyl unit of sucrose to different classes of phenolic compounds. Among the various acceptors tested, the isoflavone puerarin and the phenol coniferyl alcohol were the most efficiently fructosylated compounds, with conversion rates of 93% and 25.1%, respectively. In both cases, mono-, di-, and trifructosides were synthesized at a ratio of 37:14:1 and 32:8:1, respectively. Structural characterization of the puerarin mono-fructoside revealed that the enzyme transferred the fructosyl moiety of sucrose to the O6-position of the glucosyl unit of puerarin. The water solubility of fructosyl-ß-(2→6)-puerarin was increased 23-fold, up to 16.2 g L-1, while its antioxidant capacity was only decreased 1.25-fold compared with that of puerarin.


Assuntos
Proteínas de Bactérias/metabolismo , Gluconacetobacter/enzimologia , Hexosiltransferases/metabolismo , Fenóis/metabolismo , Sacarose/metabolismo , Biocatálise , Glicosilação , Isoflavonas/química , Isoflavonas/metabolismo , Fenóis/química , Solubilidade
9.
World J Microbiol Biotechnol ; 34(10): 152, 2018 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-30267248

RESUMO

Vinasse is a waste obtained from the production of beverages, such as tequila and cachaça. The presence of acids, alcohols, sugars, minerals, amino acids, peptides, and nitrogen salts make vinasse a hazardous liquid waste to the environment, affecting the fauna, flora, and microbiota of rivers and lagoons. This study used biological treatment concomitant to volatile compound production. The yeasts used in the study were Saccharomyces cerevisiae (CCMA 0187 and CCMA 0188), Candida parapsilosis (CCMA 0544), and Pichia anomala (CCMA 0193). A higher percentage reduction in chemical and biochemical oxygen demand was observed in the tequila vinasse than in the cachaça vinasse. However, a higher production of volatile compounds was observed in the cachaça vinasse. C. parapsilosis CCMA 0544 produced the highest concentration of 2-phenylethanol (162 mg L-1). These results indicated that the environmental damage of vinasse can be reduced by treating vinasse with yeasts, and this treatment produces aroma compounds. This biological treatment has high economic potential, especially for the tequila industry.


Assuntos
Bebidas Alcoólicas , Aromatizantes/metabolismo , Resíduos Industriais , Compostos Orgânicos Voláteis/metabolismo , Gerenciamento de Resíduos/métodos , Leveduras/metabolismo , Agave/química , Agave/microbiologia , Álcoois/metabolismo , Análise da Demanda Biológica de Oxigênio , Biomassa , Candida/metabolismo , Poluição Ambiental/prevenção & controle , Fermentação , Concentração de Íons de Hidrogênio , Álcool Feniletílico/metabolismo , Pichia/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharum , Temperatura , Compostos Orgânicos Voláteis/análise , Leveduras/crescimento & desenvolvimento
10.
Methods Mol Biol ; 1835: 287-296, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30109658

RESUMO

Carbohydrate fatty acid esters have a broad spectrum of applications in the food, cosmetic, and pharmaceutical industries. The enzyme-catalyzed acylation is significantly more selective than the chemical process and is carried out at milder conditions. Compared with mono- and disaccharides, the acylation of trisaccharides has been less studied. However, trisaccharide esters display notable bioactive properties, probably due to the higher hydrophilicity of the sugar head group. In this chapter, we describe the acylation of two trisaccharides, maltotriose and 1-kestose, catalyzed by different immobilized lipases, using vinyl esters as acyl donors. To illustrate the potential of such compounds, the antitumor activity of 6″-O-palmitoyl-maltotriose is shown.


Assuntos
Ésteres/metabolismo , Ácidos Graxos/metabolismo , Lipase/metabolismo , Trissacarídeos/metabolismo , Acilação , Catálise , Linhagem Celular , Cromatografia Líquida de Alta Pressão , Ésteres/química , Ácidos Graxos/química , Humanos , Espectrometria de Massas , Trissacarídeos/química
11.
Appl Microbiol Biotechnol ; 101(13): 5223-5234, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28593337

RESUMO

Enzymatic fructosylation of organic acceptors other than sugar opens access to the production of new molecules that do not exist in nature. These new glycoconjugates may have improved physical-chemical and bioactive properties like solubility, stability, bioavailability, and bioactivity. This review focuses on different classes of acceptors including alkyl alcohols, aromatic alcohols, alkaloids, flavonoids, and xanthonoids, which were tested for the production of fructoderivatives using enzymes from the glycoside hydrolase (GH) families 32 and 68 that use sucrose as donor substrate. The enzymatic strategies and the reaction conditions required for the achievement of these complex reactions are discussed, in particular with regard to the type of acceptors. The solubility and pharmacokinetic and antioxidant activity of some of these new ß-D-fructofuranosides in comparison is reviewed and compared with their glucoside analogs to highlight the differences between these molecules for technological applications.


Assuntos
Produtos Biológicos/metabolismo , Frutose/metabolismo , Glicosídeo Hidrolases/metabolismo , Sacarose/metabolismo , Produtos Biológicos/química , Glicosilação , Hexosiltransferases/metabolismo , Especificidade por Substrato
12.
Food Chem ; 204: 437-443, 2016 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-26988522

RESUMO

Carbohydrate fatty acid esters are non-ionic surfactants with a broad spectrum of applications. These molecules are generally synthesized using short carbohydrates or linear fructans; however in this research carbohydrate fatty acid esters were produced for the first time with branched fructans from Agave tequilana. Using immobilized lipases we successfully acylated A. tequilana fructans with vinyl laurate, obtaining products with different degrees of polymerization (DP). Lipozyme 435 was the most efficient lipase to catalyze the transesterification reaction. HPLC and ESI-MS analysis proved the presence of a mixture of acylated products as a result of the chemical complexity of fructans in the A. tequilana. The ESI-MS spectra showed a molecular mass shift between 183 and 366g/mol for fructooligosaccharides with a DP lower than 6, which indicated the presence of Agave fructans that had been mono- and diacylated with lauric acid. The carbohydrate fatty acid esters (CFAE) obtained showed good emulsifying properties in W/O emulsions.


Assuntos
Agave/química , Emulsões/química , Ésteres/química , Ácidos Graxos/química , Frutanos/química , Acilação , Biocatálise , Lipase/química , Oligossacarídeos/química , Polimerização
14.
Genome Announc ; 3(4)2015 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-26205871

RESUMO

Torulaspora delbrueckii presents metabolic features interesting for biotechnological applications (in the dairy and wine industries). Recently, the T. delbrueckii CBS 1146 genome, which has been maintained under laboratory conditions since 1970, was published. Thus, a genome of a new mezcal yeast was sequenced and characterized and showed genetic differences and a higher genome assembly quality, offering a better reference genome.

15.
Genome Announc ; 3(3)2015 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-26067948

RESUMO

Candida apicola, a highly osmotolerant ascomycetes yeast, produces sophorolipids (biosurfactants), membrane fatty acids, and enzymes of biotechnological interest. The genome obtained has a high-quality draft for this species and can be used as a reference to perform further analyses, such as differential gene expression in yeast from Candida genera.

16.
Bioresour Technol ; 146: 267-273, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23941710

RESUMO

Agave tequilana fructans (ATF) constitute a substrate for bioethanol and tequila industries. As Kluyveromyces marxianus produces specific fructanases for ATF hydrolysis, as well as ethanol, it can perform simultaneous saccharification and fermentation. In this work, fifteen K. marxianus yeasts were evaluated to develop inoculums with fructanase activity on ATF. These inoculums were added to an ATF medium for simultaneous saccharification and fermentation. All the yeasts, showed exo-fructanhydrolase activity with different substrate specificities. The yeast with highest fructanase activity in the inoculums showed the lowest ethanol production level (20 g/l). Five K. marxianus strains were the most suitable for the simultaneous saccharification and fermentation of ATF. The volatile compounds composition was evaluated at the end of fermentation, and a high diversity was observed between yeasts, nevertheless all of them produced high levels of isobutyl alcohol. The simultaneous saccharification and fermentation of ATF with K. marxianus strains has potential for industrial application.


Assuntos
Agave/química , Biocombustíveis , Etanol/química , Glicosídeo Hidrolases/química , Kluyveromyces/metabolismo , Bebidas Alcoólicas , Biomassa , Butanóis/química , Carboidratos , Meios de Cultura , Fermentação , Hidrólise , Fatores de Tempo
17.
World J Microbiol Biotechnol ; 29(5): 875-81, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23329062

RESUMO

Traditionally, industrial tequila production has used spontaneous fermentation or Saccharomyces cerevisiae yeast strains. Despite the potential of non-Saccharomyces strains for alcoholic fermentation, few studies have been performed at industrial level with these yeasts. Therefore, in this work, Agave tequilana juice was fermented at an industrial level using two non-Saccharomyces yeasts (Pichia kluyveri and Kluyveromyces marxianus) with fermentation efficiency higher than 85 %. Pichia kluyveri (GRO3) was more efficient for alcohol and ethyl lactate production than S. cerevisiae (AR5), while Kluyveromyces marxianus (GRO6) produced more isobutanol and ethyl-acetate than S. cerevisiae (AR5). The level of volatile compounds at the end of fermentation was compared with the tequila standard regulation. All volatile compounds were within the allowed range except for methanol, which was higher for S. cerevisiae (AR5) and K. marxianus (GRO6). The variations in methanol may have been caused by the Agave tequilana used for the tests, since this compound is not synthesized by these yeasts.


Assuntos
Bebidas Alcoólicas/microbiologia , Microbiologia Industrial/métodos , Kluyveromyces/metabolismo , Pichia/metabolismo , Saccharomyces cerevisiae/metabolismo , Acetatos/metabolismo , Agave/metabolismo , Agave/microbiologia , Bebidas Alcoólicas/análise , Etanol/metabolismo , Fermentação
18.
Antonie Van Leeuwenhoek ; 102(2): 247-55, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22535436

RESUMO

During ethanol fermentation, yeast cells are exposed to stress due to the accumulation of ethanol, cell growth is altered and the output of the target product is reduced. For Agave beverages, like tequila, no reports have been published on the global gene expression under ethanol stress. In this work, we used microarray analysis to identify Saccharomyces cerevisiae genes involved in the ethanol response. Gene expression of a tequila yeast strain of S. cerevisiae (AR5) was explored by comparing global gene expression with that of laboratory strain S288C, both after ethanol exposure. Additionally, we used two different culture conditions, cells grown in Agave tequilana juice as a natural fermentation media or grown in yeast-extract peptone dextrose as artificial media. Of the 6368 S. cerevisiae genes in the microarray, 657 genes were identified that had different expression responses to ethanol stress due to strain and/or media. A cluster of 28 genes was found over-expressed specifically in the AR5 tequila strain that could be involved in the adaptation to tequila yeast fermentation, 14 of which are unknown such as yor343c, ylr162w, ygr182c, ymr265c, yer053c-a or ydr415c. These could be the most suitable genes for transforming tequila yeast to increase ethanol tolerance in the tequila fermentation process. Other genes involved in response to stress (RFC4, TSA1, MLH1, PAU3, RAD53) or transport (CYB2, TIP20, QCR9) were expressed in the same cluster. Unknown genes could be good candidates for the development of recombinant yeasts with ethanol tolerance for use in industrial tequila fermentation.


Assuntos
Agave/microbiologia , Bebidas Alcoólicas/microbiologia , Etanol/metabolismo , Perfilação da Expressão Gênica , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Agave/metabolismo , Fermentação , Proteínas de Saccharomyces cerevisiae/metabolismo
19.
Bioresour Technol ; 110: 560-5, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22336744

RESUMO

Fructanase and fructosyltransferase are interesting for the tequila process and prebiotics production (functional food industry). In this study, one hundred thirty non-Saccharomyces yeasts isolated from "Mezcal de Oaxaca" were screened for fructanase and fructosyltransferase activity. On solid medium, fifty isolates grew on Agave tequilana fructans (ATF), inulin or levan. In liquid media, inulin and ATF induced fructanase activities of between 0.02 and 0.27U/ml depending of yeast isolate. High fructanase activity on sucrose was observed for Kluyveromyces marxianus and Torulaspora delbrueckii, while the highest fructanase activity on inulin and ATF was observed for Issatchenkia orientalis, Cryptococcus albidus, and Candida apicola. Zygosaccharomyces bisporus and Candida boidinii had a high hydrolytic activity on levan. Sixteen yeasts belonging to K. marxianus, T. delbrueckii and C. apicola species were positive for fructosyltransferase activity. Mezcal microbiota proved to showed to be a source for new fructanase and fructosyltransferases with potential application in the tequila and food industry.


Assuntos
Agave/enzimologia , Fermentação , Glicosídeo Hidrolases/metabolismo , Hexosiltransferases/metabolismo , Leveduras/enzimologia , Meios de Cultura
20.
Bioresour Technol ; 102(3): 3298-303, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21067917

RESUMO

A fructanase, produced by a Kluyveromyces marxianus strain isolated during the fermentation step of the elaboration process of "Mezcal de Guerrero" was purified and biochemically characterized. The active protein was a glycosylated dimer with a molecular weight of approximately 250 kDa. The specific enzymatic activity of the protein was determined for different substrates: sucrose, inulin, Agave tequilana fructan, levan and Actilight® and compared with the activity of Fructozyme®. The hydrolysis profile of the different substrates analyzed by HPAEC-PAD showed that the enzyme has different affinities over the substrates tested with a sucrose/inulin enzymatic activity ratio (S/I) of 125. For the hydrolysis of Agave tequilana fructans, the enzyme also showed a higher enzymatic activity and specificity than Fructozyme®, which is important for its potential application in the tequila industry.


Assuntos
Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/isolamento & purificação , Kluyveromyces/enzimologia , Sequência de Aminoácidos , Ativação Enzimática , Estabilidade Enzimática , Fermentação , Glicosídeo Hidrolases/metabolismo , Dados de Sequência Molecular , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...